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NOTATION 

If we designate by c,, c, the heat capacity per gram a t  constant 
pressure and at constant volume, respectively, and by C, and 
C, the corresponding quantities per gram-mole, we have 

C, = M c ,  and C ,  = M c ,  

where hi! is the molecular weight of the gas. The normal calorie 
(15") is assumed as the heat unit and temperatures are referred to 
the normal centigrade scale (hydrogen thermometer) but few 
authors take precautions in this connection on account of the 
moderate accuracy claimed for the result. 

We can also write 

It is obvious that it suffices to determine two of the four quan- 
tities c,, c,, y and 6 in order to find the others but knowledge of a 
third offers a valuable check. 

FUKDAMENTAL QUANTITIES 

The quantities y and c, are usually considered as the primary 
ones because c, presents greater difficulties in experimental 
determination and the methods for calculating 6 are unsatis- 
factory. 

For example, to take the most favorable case, that of air, the 
values of c, a t  one atmosphere obtained by different investigators 
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for the same temperature interval exhibit differences greater 
than one per cent and the values obtained over a temperature 
range can be fitted only by an undulating curve, as shown in 
Table 1. Furthermore while the values of y for dry COz-free 
air a t  atmospheric pressure in the neighborhood of 20" are suffi- 
ciently concordant to permit averaging (1.400 to 1.405), the 
values obtained a t  other temperatures and pressures exhibit 
discrepancies which can be characterized only as enormous. It is 
necessary, therefore, to consider the possibilities of calculating 6. 

TABLE 1 

t 1 -181 I --75 I +20 I 25 I 59 1 60 1 ca.230 I ca.410 
C, 0 249 0 243 0 240 0 2412 0 237 0 2416 0 237 0 243 

METHODS 

I .  Calculation of 6 

In certain special cases precise values are available for the two 
coefficients of expansion 

1 a P  and j3 = - - 1 a v  
V ,  a T 

c y = - -  
P, a T 

and for such cases 6 is readily obtained from the classical relation 

in which all terms are known for 0" and 1 atm., and are compara- 
tively easy to determine in general. 

?!!! and - bP may be computed in a general way from an appro- 
bT bT 

priately selected equation of state; but it is first necessary to 
eliminate all equations, such as that of Van der Waals, which 
yield a value of p (and consequently of the internal pressure) 
which is independent of T.  

A recent examination (1) of the behavior of the internal pres- 
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sure as a function of p and T has led to the expression' (CGS 
Units) 

a v  
M p v  = ET [(L)z - 3.1606 - (4" - 

u + a  ( v  - a)2 

in which x is the reciprocal of the reduced temperature x = -2 ; ( 3 
RT, 
M p c  

a: = 0.0463 - ; R = 8.316 x 107 and To = 273.1'. 

For our present purposes this equation is somewhat incon- 
venient on account of the complexity of the calculations which it 
involves. Others have been suggested based more or less upon 
that of Van der Waals and upon the principle of corresponding 
states. One of these, proposed by D. Berthelot, yields results of 
sufficient accuracy, except close to the critical point, but cannot 
be used in the region of saturation. Another due to Callendar 
yields errors in the opposite direction. For example, for satu- 
rated steam a t  100' and 1 atm. 

2.070 Equation of Berthelot r 2.198 Equation of Callendar M6 = 

The mean 2.134 is not far from the true value 2.12. 
A third relation proposed by Leduc may be expressed thus 

M p v  = RTp (3) 

which may be regarded as a definition of the relative molal volume 
'p, in terms of that of a perfect gas. 

However, instead of taking for 'p, the expression between 
brackets in equation 2, it may be treated as a function of T and 
p and the equation written in the form 

A. Leduc, Thermodynamique, Doin, (1924), p. 192; and Compt. rend. 176, 
1132 (1923). This equation reproduces very closely Amagat's data for COz almost 
up to  saturation and as high as 200 atm. and loo", for example. I t  also faithfully 
reproduces the isotherms of 0, up to 500 atm. but with significant departures at 
1000 atm. doubtless because the variation of the co-volume is not properly taken 
care of by the equation. 
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”. 1 bv 
v bT P OT 

If p is of the order of 1 atmos- 

phere (or if the reduced pressure 7~ 2 O . l ) ,  p is given with suffi- 
cient accuracy by the expression 

rp = 1 - rip - np2 (5) 

in which rn and qz are functions of T and in most cases (normal 
gases) functions of the reduced temperature T or better of its 

with a’ = - - and 0’ = - - 

- 

reciprocal z, (= $a) 

If we put z = mp, and u = np: equation 4 may be written 

m - r -  

For the pressure range under consideration and for T 5 0.9, 

For normal gases z is given by 
7 2  u is negligible. 

2 = 0.1 d22 [ 2 ~ 3  + 1 452 (2 - X) - 11 

and within the pressure limits under consideration we may 
assume2 (2) 

u = 2x3 (2-1) 

The values of 6 employed in Table IV have been calculated by 
The error in the values so cal- means of the above equations. 

culated apparently should not exceed 0.2 per cent. 
bP av It should be noted that the partical derivatives, - and - b 2’ bT’ 

apply to the same state of the gas, the calculation of 6 in this way 
is not applicable to mean specific heats. 

* A. Leduc, Compt. rend., 148, 548 (1909) and Thermodynamique, pp. 109 and 
113, in which the case of the “abnormal” gas is also discussed. 
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2. Velocity of sound 

The best method for determination of the specific heat ratio 
y appears still to be that known as the “velocity of sound method” 
based upon the formula of Laplace 

r 7 = & v = v  - y -  2 
It is, however, not safe to assume the equation of state of a 

perfect gas in using the Laplace formula, a precaution not ob- 
served by many investigators, including some modern ones. In 
this manner for example (3) Wiillner (1878) found for COz at  
O”, y = 1.31131 while the correct calculation gives 1.320. 

TABLE 2 

0.993 C ~ H B .  . . . . . . . . . . . .  .O ,988 
. . . . .  .0.9995 NzO. 0.9925 “ 3 . .  . . . . . . . . . . .  .O ,9856 

CHI..  . . . . . . . . . . . . .  .0.998 HzS 

The Van der Waals equation would obviously give a better 
result. I t  is, however, necessary to determine the constants of 
the equation from experimental data on the gas in the same 
region of pressures and temperatures. 

Equation (2) is much more reliable; but the calculation is very 
laborious and for pressures of the order of one atmosphere it is 
more convenient to employ equations (3) and (5) which give 

and since npz is negligible (4) 

Having calculated y with the aid of the perfect gas law, it is now 
corrected by multiplying it by the factor i2 if the law of Avogadro 
has been assumed or by the fnctor f if an experimental value for 
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the density has been utilized. Table 2 gives the values of pa a t  
0" and 1 atm. (10.0002 where the fourth decimal is given). 

The correction for departure from the perfect gas law amounts, 
therefore, to 5 per cent of y for SOz, and to 4 per cent in the case 
of benzene at  100" and 1 atm. 

The determination of V by the method of Kundt also requires 
certain precautions. The formula of Kirchoff 

K 

in which V is the velocity in free air, K is a constant and N is the 
frequency, is not valid according to some authorities (Lord 
Rayleigh, Helmholtz) unless the diameter, d, of the measuring 
tube 2 5 cm. Now most investi- 
gators have employed tubes of much smaller diameters and the 
various devices which have been used to eliminate K by using 
two or three different tubes are not valid since such an elimination 
itself assumes the validity of Kirchoff's equation. Moreover K 
is a function of certain properties of the gas (e.g., the viscosity, 
which varies with T )  and also of the nature of the tube, and it is 
probable that the proportionalities assumed are inexact. The 
correction is, therefore, unsatisfactory unless it is small; that is, 
unless the tube is wide and N is large.3 

3. Method of Clement-Desormes 
We shall pass over the grave difficulties created by the oscilla- 

tions of Cazin which have not yet been satisfactorily resolved. 
The usual procedure is to produce a sudden expansion ( 4: 5 cm. 
Hg) and it is necessary to calculate y by the logarithmic 
formula (5 ) .  

K is usually taken as 0.65. 

3 If d = 5 cm. and N = 435 the correction amounts to  35 X which is in the 
case of air 1.20 m/sec. This means that  an  error of 10 per cent in the Correction 
is scarcely allowable since i t  is a systematic error. 

Wullner, with d = 3 cm. and N = 2539, failed to make any correction thus intro- 
ducing an error of 0.5 per cent in y for CO,. If the true value for N is 2535, 
Wullner's COz was not, as he supposed, free from air. Thus two errors were pres- 
ent, the first of which 10.3 per cent and the second possibly a little greater but 
impossible to evaluate. These two must have partially compensated the other 
one. 
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Even with an expansion equivalent to 10 em. Hg for COz at  
0", the error introduced by failure to correct for departure from 

A 7  the perfect gas law amounts to - = - 2.6 x 10-4, which is 

negligible because a precision of 0.1 per cent is, a t  present, illusory. 
The correction is still small but necessary in the case of SO2 a t  
O", for example. It has been suggested that a series of expansions 
of decreasing magnitude be made and that the curve of values of 
y thus obtained be extrapolated to zero expansion. This method, 
however, is of no value because of the increasing uncertainty in 
y with decreasing expansion. This is the case, for example, in 
the experiments of Maneuvrier (formula of Reech). 

Y 

4. Method of Lummer and Pringsheim 
This method has been perfected by numerous investigators, and 

most recently by Partington. The correction for departure from 
the perfect gas law is especially large in this method: 0.5 per cent 
for C 0 2  and 1.8 per cent for SO2 a t  15". It is easily made with 
the aid of the relations discussed above. With the aid of an 
extra fine bolometric filiament (Wollaston wire, d l  2 ~ )  and a 
rapid and sensitive galvanometer, Partington and Howe have 
sought to reproduce by means of the oscillations of the galvan- 
ometer mirror, those which occur within the gas. 

The deflection was found to assume a constant value during 
a period of time varying with the nature of the gas, in some cases 
amounting to 10 seconds but not exceeding 2 seconds in the case 
of hydrogen. 

It is difficult to follow the authors in their conclusion that this 
condition corresponds to a permanent equilibrium. It is rather 
an apparent or mobile equilibrium (Prevost) resulting from the 
fact that the heat supplied to the filiament by radiation from its 
surroundings compensates for a short time, that which it loses to 
the gas cooled by the expansion. As a consequence the degree of 
cooling, and likewise the value of y, is underestimated. This 
effect evidently increases with the diameter of the wire and it is 
on this account that Makower, using a wire of 30 p diameter 
found for saturated steam at  100'7 = 1.303, while the cyclic 



8 A. LEDUC 

method (Leduc u. infra) based upon the latent heat of vaporiaa- 
tion and the vapor pressure gives y = 1.373 and the experiments 
of Neyreneuf lead to the value 1.368 for the slightly superheated 
vapor. Aside from all other considerations, it is, therefore, 
necessary to increase slightly all values obtained by this method 
with very fine wires and to reject all those obtained with wires 
whose diameter attains 20 to 30 I", for example. On the basis of 
these considerations i t  may be remarked that the great mobility of 
the hydrogen molecules favoring the exchange of heat between 
the wire and the gas would account for the decrease in the appar- 
ent equilibrium period. 

One investigator has obtained a value for y independent of the 
rate of the expansion employed. It is, however, difficult to see 
how a slow expansion could be adiabatic. 

The substitution of a thermocouple for a bolometric wire 
(Moody) does not appear to offer any advantages. 

5. Direct experimental determination of C p  
a. Method of mixtures (e.g., Regnault) and method of circulation 

(Delaroche and Bdrard, E. Wiedemann, etc.). In this method the 
quantity of heat furnished to a calorimeter by a supposedly 
known mass of gas preheated to a known temperature is measured. 
The accurate determination of the mass of the gas is very difficult. 
The error in determining the fall in temperature of the gasis 
relatively unimportant, this fall being usually large. 

The current of gas is necessarily rapid, which results in a 
significant pressure drop through the calorimeter even with the 
arrangement used by Regnault and especially with those em- 
ployed in modern investigations (3). As a result an expansion 
takes place within the calorimeter resulting in an absorption of 
heat amounting in the case of air (according to two blank experi- 
ments by Regnault) to 1/160 of the heat carried by the gas when 
employing a preheat to 180" and a flow of 18 liters per minule. 
Since we are concerned here only with the order of magnitude 
of the heat effect due to the expansion of the gas it sufIices to 
add a correction of 1/160 for experiments of this character. In 
this way we obtain for air, c, = 0.239 and it is noteworthy that 
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this is precisely the value obtained by Wiedemann using a rate of 
flow of only 3 liters per minute but with a different type of 
apparatus. 

It is obvious that this correction should increase with the 
velocity of flow. It should be very large, for example, in the 
experiments of Knoblauch and Jakob on the vapor of water in 
which a flow of 750 grams per minute was employed. 

In  the method of Callendar and Barnes on 
the other hand, the quantity measured is the heat which must be 
supplied to the gas by an electric current in order to heat it from 
tl to t2, while it is flowing at  high velocity and consequently 
undergoing an expansion. The quantity of heat obtained is 
therefore too large. The values obtained by the method of 
constant flow are in fact larger than those obtained by the method 
of mixtures. The estimation of the exact magnitude of this 
error in either case is unfortunately difficult on account of the 
simultaneous presence of other errors. One is consequently 
reduced to averaging the results obtained by the two methods. 
when similarly applied to the same gas. 

6. Determination of C, 
This method suggested by 

Bunsen has given in the hands of Joly a few very interesting 
results notably a variation of C, with density which is confirmed 
by means of the equation of state. These results will be dis- 
cussed below: 

Dixon and his coworkers in their recent 
work do not  claim to have bettered the precision of their prede- 
cessors a t  low or moderate temperatures, but they do claim to 
find the true value ct, instead of the mean value c:: sought by 
previous investigators, usually with very discordant results. 
Dixon determines the time required for sound to travel the 
length of a long tube (straight or coiled) of lead, steel or silica 
according to the temperature. He found first that a tube 25- 
mm. diameter gave the same result when straight as when coiled. 
Using Kirchoff's correction, he found for air a t  O", V = 331.8 
m/sec as compared with the accepted value 331.5. This con- 

b. ConsLanlJEow. 

a. Method of condensation of vapor. 

b. Velocity of sound. 
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cordance is reassuring. y was computed and then C, and C, with 
the aid of Berthelot's equation.4 

In  spite of the great difficulties connected with such experi- 
ments a t  very high temperatures, the results appear to be more 
reliable than those obtained by the following method. 

7 .  T h e  explosion method 

In this method the explosive mixture receives a supposedly 
known amount of heat which suffices to raise the final system to a 
certain pressure which can be assumed to be a simple function of 
T if the composition of the final mixture is known a t  the moment 
of attaining the maximum temperature. 

In reality this composition varies in an unknown manner with 
time, and though the mean heat capacity of the mixture is 
approximately known, it is not possible to calculate with any 
feeling of security the heat capacity of each gas in the mixture. 
This state of affairs justifies the attempts of Pier to measure the 
actual maximum temperature with the aid of a bolometer instead 
of attempting to calculate it from the measured pressure. In- 
genious instruments were devised for correcting for the loss of 
heat (e.g., by an automatic pressure recorder) so that even 
though the values found for the specific heats of the gases are 
not satisfactory for the purposes of the scientist, they do make it 
possible to calculate the temperature and pressure developed in 
an analogous explosive mixture of the same gases in different pro- 
portions which has certain useful applications in ballistics. 

8. Examinat ion of the specific heat data 

Atmospheric air under ordinary conditions and dry  air at 0". 
It is not possible to determine accurately the so-called normal 

4 The question has been asked as to  whether the perfect gas law may be safely 
employed under conditions of high pressure if the temperature is also high. 
Application of equation (4a) gives for COz a t  1000" (z = 0.24) and 1 atm., C, - 

R R 
C, = - X 1.0003 that  is practically = - At 100 atm., however, we would have 

approximately Cp - C, = 2.05 the same as for COz a t  0" and 1 atm. The error 
would be still greater at 2000' under 2000 atm. 

J J' 
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velocity of sound; that is, the velocity in open air. Measure- 
ments in large tubes are much more accurate. The Violle 
correction for the tube diameter may be regarded as reliable but 
the humidity correction according to  the formula of Regnault 

Ti = Ti,, (1 + A $ )  

with A = 0.1875 is very inaccurate. 

m/sec. 

mixtures (6). 

In  1913, Violle accepted A = 0.16 and obtained V o  = 331.36 

In practice it is convenient to employ Leduc's equation for gas 

in which r, is the richness of the mixture in the gas a and IC, 
the value (for this gas) of the expression 

( p  TI2 (1 + np2) K -  
P 

This is equivalent to the use of Regnault's equation with A = 

0.15. It is necessary in addition to make two smaller corrections 
for GOz and for the mercury-in-glass temperature scale, which 
gives finally 

Tio = 331.5 =k 0.1 m/sec. 

Equation (5) then gives yo = 1.4027 which may be compared with 

1.403 Guhritot 1912 
1.4032 (17") Partington 1913 
1.4029 (20') Miss Schields 1917 
1.4031 (0') Hebb 1919 

On the basis of the best values we may take yo = 1.403 and yloo 
= 1.401, the latter being based upon an assumed linear variation 
with t and being therefore less certain. The coefficients of 
expansion a and ,t? are accurately known and lead to 

(Cp - C,)o = 0.06895 
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whence (c,),, = 0.2400 and (c,),, = 0.1711. For a molecular 
weight of 28.98 these correspond to (C,),  = 6.95s and (C,), = 

4.95*.. It is to be noted that the method of mixtures gives a t  
25"c, = 0.237 (e.g., Scheel and Heuse, Eggert) instead of 0.241 
by the constant flow method (Swann, Scheel and Heuse). This 
confirms previous observations. We must conclude, therefore, 
that the value of Swann ( c , ) ~ ~ ~  = 0.243 and that of Thibaut, 
( c , ) ~ ~ ,  = 0.245, are too large. Volume V of International 
Critical Tables gives a tabulation of the results of various investi- 
gators between - 185" and + 280", and for pressures up to 220 
atm. Within this region the data show that 

We may note further that c, (Witkowsky) and c, (Bennewitz and 
Splitberger) (7) each becomes infinity ak the critical point. 

It may be noted further that the values calculated by Lussana 
are in general much larger than the experimental values of other 
investigators. Thus for 100" and 100 atm. Lussana gives c, = 

0.395 instead of 0.265. 
As regards y, while a t  0" Witkowsky and Koch find that it 

varies almost linearly with the pressure between 25 and 200 atm. 
(y = 1.83), Koch finds that a t  -79.4" it passes through a maxi- 
mum a t  150 atm. (y = 2.47) and falls again to 2.33 at 200 atm. 

Various gases at 15' and I a2m. The value of y is rarely 
known to 0.001 and in some cases the value is not known beyond 
the second decimal. Even in such cases, however, calculation 
through y and 6 is to be recommended. One obtains in this way 
table 3. 

Molal heat capacity at 15' and 1 aim. Calculated f r o m  y and 6. 
At very low temperatures it is best to utilize the experimental 
C, values a t  atmospheric pressure as determined by Scheel and 
Heuse and others, and to calculate 6 from equation (4). The 
second decimal is here uncertain on account of experimental 
difficulties. 

According to the data of those authors the specific heats for 
certain gases decrease with increase in temperature in the region 
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-180" to -50", while above 0" we have in nearly all cases 

3 > 0 and __ > 0 at  atmospheric pressure. Such a result 
bT bT 
would ordinarily be attributed to important experimental errors ; 
but the phenomenon appears also in the case of COz at  ordinary 
temperatures and high pressures, according to Lussana (e.g., e, 
= 1.47 at 13.2" and 0.386 a t  114.9" under a pressure of 20.5 atm.). 
According to Knoblauch and Mollier the same is true for water 
vapor. 

acv 

TABLE 3 

G.45 

A .  . . . . . . . . . . . . . . . . . . . . . . . . .  
€1,. . . .  . . . . . . . . . . . . . .  
PIT2 . . . . . . . . . . . . . . . . . . . . . . . . .  
0, . . . . . . . . . . . . . . . . . . . . . . . . .  
NO, . . . . . . . . . . . . . . . . .  
co . . . . . . . . . . . . . . . . . . . . . . . .  
CH,, . . . . . . . . . . . . . . . . . . . . . .  
co, . . . . . . . . . . . . . . . . . . . . . . . .  
N,O,. . . . . . . . . . . .  . . . . . .  
CaHa. . . . . . . . . . . .  . . . . . .  
HC1 . . . . . . . . . . . . . . . . . . . . . . .  

I-IZS, . . . . . . . . . . . . . . . . . . . . . . .  
"3. . . . . . . . . . . . . . . . . . . . . . .  
Clz. . . . . . . . . . . . . . . . . . . . . . . . .  

so2 . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . .  

$36 = cp - cv 

1 994 
1 967 
1 995 
1 095 
1 996 
1 905 
2 004 
2 041 
2 050 
2 057 
2 057 
2 057 
2 086 
2 092 
2 108 
2 13,s 
2 170 
2 183 

Y 

1 609 
1 410 
1 404 
1 401 
1 400 
1 404 
1 31 
1 304 
1 303 
1 255 
1 41 
1 26 
1 22 
1 32 
1 31 
1 35, 
1 25s 
1 29 

CP 

5 GO 
6 83 
6 94 
6 97 
6 99 
6 94 
8 47 
8 75 
8 82 

10 07 
7 07 
9 97 

8 63 
8 91 
8 15 

10 65 
9 71 

11 6 

C Y  

3 00 
4 84 
4 94 
4 97 
4 99 
4 94 
6 47 
6 71 
6 77 
8 03 
5 02 
7 91 
9 5  
6 54 
6 80 
6 01 
8 49 
7 53 

In spite of the satisfactory nature of the curves obtained, it 
seems justifiable to question these results on account of the 
enormous gas velocities employed, the flow amounting to more 
than 750 g./min. This appears to be the more justifiable in the 
light of Holborn and Henning's values a t  atmospheric pressure 
which fail to exhibit any minimum. I t  might be objected that 
these latter experiments do not extend below 250" while the 
minimum to be expected is not very pronounced and should lie 
a t  about 190". But i t  should be noted that a t  a given tempera- 
ture the experimental values are uncertain to  2 per cent which is 
the difference found between 100" and 190". 
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100 O 

200° 
400 

In this connection, it is interesting to compare (table 4) some 
values by Knoblauch and Riollier with those of Holborn and 
Henning. The existence of such a minimum is furthermore 
inconsistent with the calculations of Leduc (8) for saturated and 
superheated vapor between 100" and 160" and for pressures up to 
4 atm. based upon the vapor pressure data of Holborn and Hen- 
ning up on the latent heat values of Henning, and upon the 
curves of compressibility (in reduced coordinates) of the vapor 
up to the saturation point (see equations 3, 5, etc.). It should 
be noted that the values of y calculated by the same method 
(the cycle method) are materially greater than those ordinarily 
accepted. Thus at  100" ys = 1.373 in good agreement with the 
value deduced from the velocity of sound according to Neyreneuf 

KNOBLAUCH AND MOLLIER HOLBORN AND HENh?NG 

0.482 
0.471 0.466 (extrapolated) 
0.490 0.473 

TABLE 4 

(9) by means of equation ( 5 ) ,  namely, y = 1.368 for the slightly 
superheated vapor. 

In  conclusion, even if we reject the more doubtful series of 
measurements as well as those involving the most serious experi- 
mental difficulties, it is scarcely possible to be certain of a pre- 
cision better than 1 part in 200 for pressures other than atmos- 
pheric at very high or very low temperatures. 

For c, the uncertainty is even greater whether the values are 
obtained by the explosion method or deduced from y or c, by 
combination with 6. 

Partington and Shilling (10) have constructed specific heat- 
temperature curves from the best available data in particular the 
c, data of Knoblauch and Mollier and the cy data of Pier between 
2000" and 2500" as recalculated and materially modified by 
Siegel. 

It should be pointed out that the values of c, being for 1 atm. 
this will also be the case for the values of c, calculated by equation 
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(l), while the c, values obtained by the explosion method corre- 
spond to a wide variation in pressure. 

It is, therefore, not justifiable to deduce c, values from these 
c, values unless they are expressed as a function of T and p .  It 
is possibly for this reason that the curves obtained for water vapor 
have such a peculiar form, since the high temperature values are 
deduced from the explosion data. Dissociation is, however, 
also doubtless a factor, since the curves for COz computed from 
similar data do not exhibit the same character. 

9. Variat ion of c,  with density 

The experiments of Joly (11) using with a high degree of 
perfection the method of vapor condensation suggested by 
Bunsen deserve special mention. The values shown in table 5 
were obtained for the mean specific heat (at substantially constant 

TABLE 5 

d, g/cm3 . . . . . . . . . . . . . . . . . . .  0.0387 0.077 0.118 0.144 
c ,  . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 0.1714 1 0.184 1 0.194 1 0.202 

volume) of COz between 12" and 100". Joly represents his data 
by the following formula: 

(cV):io f 1% = 0.165 + 0.2125 d + 0.340 d2 

Now, if we use the classical equation 

a%=-- T a2 p 
b v  J Tz 

together with equation (2), we obtain 

5 2  x 4" a e 12.07 _ = -  
b d  M l + a d  

whence on integrating 

a d  
l + a d  

c = c0 + 0.274 2 2  4" - 

where co corresponds to d = 0. 



16 A. LEDUC 

The calculation gives for dl = 0.05 and dz = 0.15, cz - c1 = 
0.030. 

Now experiment gives c1 = 0.176 and cz = 0.204. The differ- 
ence, 0.028, shows satisfactory agreement with the calculated 
value and it is safe to assume that the function c = F (d) is a 
hyperbola a t  least up to d = 0.15 and probably further. 

REFERFNCES 

(1) LEDUC, A., Thermodynamique, Doin (1924), p. 192; and Compt. rend. 176, 

(2) LEDUC, A., Compt. rend. 148,548 (1909); and Thermodynamique, pp. 109 and 

(3) LEDUC, A., Compt. rend. 126,1860 (1898); 127,662 (1898). 
(4) LEDUC, A., Thermodynamique, p. 73. 
(5) LEDUC, A., Ann. phys., 4 , 5  (1915) and Thermodynamique, p. 130. 
(6) Compt. rend. 160,516,601 (1915); 178,1145 (1924); Ann. phys. 4,21 (1915). 
(7) C. A., 21,1915 (1927). 
(8) LEDUC, A., Compt. rend. 162, 1752 (1911); 164, 812 (1912); Ann. chim. phys. 

(9) Ann. chim. phys. 28,577 (1913); J. phys. Radium 2,24 (1921). 

1132 (1923). 

113. 

28, 600 (1913). 

(10) PARTIKGTON ASD SHILLING, The Specific Heats of Gases, London, Benn 

(11) Proc. Roy. SOC. (London) M A ,  390 (1804). 
(1924). 


